网站导航

24小时服务热线:19103801095

欢迎来到北京飞速度医疗科技有限公司【官网】

基于深度学习的的计算机辅助决策产品临床试验设计类型如何考虑

当前位置:首页 > 资讯中心 > 基础知识

来源:飞速度医疗器械咨询  发布时间:2022-05-07  浏览:

新闻资讯

NEWS CENTER

联系我们

contact us

请备注医疗器械注册咨询
业务咨询:19103801095(施先生,微信同)
市场合作:15577402464
周一至周日 8:00~22:00

在线客服
周一至周日8:00-22:00
QQ在线客服

基于深度学习的的计算机辅助决策产品临床试验设计类型如何考虑

基于深度学习的的计算机辅助决策产品临床试验设计类型如何考虑

  对患者是否患有目标疾病,从而对患者的分诊转诊提供辅助决策建议的产品,该类产品不给出具体病变情况,且无论辅助分诊结果为阴性、阳性,均需专业医师再一次对患者影像进行评阅,如糖尿病视网膜病变辅助分诊、肺炎辅助分诊、脑出血辅助分诊等各类目标疾病患者的计算机辅助分诊、转诊产品等,可以考虑采用单组目标值设计,主要评价指标可考虑产品辅助分诊结果的诊断准确度指标(如敏感度、特异度等,通常为患者水平)。

  对目标疾病的病变病灶进行辅助检测的产品,如肺结节辅助检测产品、骨折CT 影像辅助检测产品等,临床试验建议采用对照设计,试验组为医师与申报产品共同检测,对照组为传统检测诊断方法(如临床医师的阅片/综合诊断)。主要评价指标考虑诊断准确度指标 (如敏感度、特异度、AFROC曲线、检出率等,一般灵敏度考虑病灶病变水平,特异度考虑患者水平)。临床试验比较类型应能够体现产品受益风险的可接受性,建议考虑优效性设计,如针对4mm以上肺结节CT影像辅助检测软件可考虑患者水平的特异度优效和病灶水平的敏感度非劣效。

医疗器械注册咨询

站点声明:

本网站所提供的信息仅供参考之用,并不代表本网赞同其观点,也不代表本网对其真实性负责。图片版权归原作者所有,如有侵权请联系我们,我们立刻删除。如有关于作品内容、版权或其它问题请于作品发表后的30日内与本站联系,本网将迅速给您回应并做相关处理。
北京飞速度医疗科技有限公司专注于医疗器械、诊断试剂产品政策与法规规事务服务,提供产品注册申报代理、临床合同(CRO)研究、产品研发、GMP质量辅导等方面的技术外包服务。